Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes

نویسندگان

  • Mathieu Galtier
  • Camille Marini
  • Gilles Wainrib
  • Herbert Jaeger
چکیده

A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Niño phenomenon studied in climate research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Testing for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis

The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...

متن کامل

Scalable Minimum Bayes Risk Training of Deep Neural Network Acoustic Models Using Distributed Hessian-free Optimization

Training neural network acoustic models with sequencediscriminative criteria, such as state-level minimum Bayes risk (sMBR), been shown to produce large improvements in performance over cross-entropy. However, because they entail the processing of lattices, sequence criteria are much more computationally intensive than cross-entropy. We describe a distributed neural network training algorithm, ...

متن کامل

Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain

 In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...

متن کامل

Model-free prediction of noisy chaotic time series by deep learning

We present a deep neural network for a model-free prediction of a chaotic dynamical system from noisy observations. The proposed deep learning model aims to predict the conditional probability distribution of a state variable. The Long Short-Term Memory network (LSTM) is employed to model the nonlinear dynamics and a softmax layer is used to approximate a probability distribution. The LSTM mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2014